PUBLISHER:			
SUBJECT:		SPECIFIC GRADE:	
COURSE:		TITLE	
COPYRIGHT:			
SE ISBN:		TE ISBN:	

NON-NEGOTIABLE EVALUATION CRITERIA

2018-2024

Group VI - Mathematics
High School Algebra I for $8^{\text {th }}$ Grade

Equity, Accessibility and Format

Yes	No	CRITERIA	NOTES
		1. INTER-ETHNIC The instructional materials meets the requirements of inter-ethnic: concepts, content and illustrations, as set by WV Board of Education Policy 2445.41.	
		2. EQUAL OPPORTUNITY The instructional material meets the requirements of equal opportunity: concepts, content, illustration, heritage, roles contributions, experiences and achievements of males and females in American and other cultures.	
		3. FORMAT This resource includes an interactive electronic/digital component for students.	
		4. BIAS The instructional material is free of political bias.	
		5. COMMON CORE The instructional materials do not reference Common Core academic standards. (WV Code §18-2E-1b-1)	

GENERAL EVALUATION CRITERIA

2018-2024

Group VI - Mathematics
High School Algebra I for $8^{\text {th }}$ Grade

The general evaluation criteria apply to each grade level and are to be evaluated for each grade level unless otherwise specified. These criteria consist of information critical to the development of all grade levels. In reading the general evaluation criteria and subsequent specific grade level criteria, e.g. means "examples of" and i.e. means that "each of" those items must be addressed. Eighty percent of the general and eighty percent of the specific criteria must be met with I (in-depth) or A (adequate) in order to be recommended.

(Vendor/Publisher) SPECIFIC LOCATION OF CONTENT	(IMR Committee) Responses				
	$\mathbf{I}=$ In-depth, $\mathbf{A}=$ Adequate, $\mathbf{M}=$ Minimal, $\mathbf{N}=$ Nonexistent	1	A	M	N
	In addition to alignment of Content Standards, materials must also clearly connect to Learning for the $21^{\text {st }}$ Century which includes opportunities for students to develop:				
Communication and Reasoning					
For student mastery of College- and Career-Readiness Standards, the instructional materials will include multiple strategies that provide students opportunities to:					
	1. Explain the correspondence between equations, verbal descriptions, tables, and graphs.				
	2. Make conjectures and build a logical progression of statements to explore the truth of their conjectures.				
	3. Distinguish correct logic or reasoning from that which is flawed.				
	4. Justify their conclusions, communicate them to others, and respond to the arguments of others.				
	5. Evaluate the reasonableness of intermediate results.				
	6. Communicate precisely to others using appropriate mathematical language. When more than one term can describe a concept, use				

	vocabulary from the West Virginia College- and Career-Readiness Standards.				
	7. Articulate thoughts and ideas through oral, written, and multimedia communications.				

Mathematical Modeling

For student mastery of College- and Career-Readiness Standards, the instructional materials will include multiple strategies that provide students opportunities to:

	8. Apply mathematics to solve problems in everyday life.				
	9. Use concrete objects, pictures, diagrams, or graphs to help conceptualize and solve a problem.				
	10. Use multiple representations.				
	11. Use a variety of appropriate tools strategically. 12. Calculate accurately and efficiently, express numerical answers with a degree precision appropriate for the problem context.				
	13. Interpret their mathematical results in the context of the situation.				
	14. Reflect on whether the results make sense, improving the model if it has not serve its purpose.				
	15. Explore careers which apply the understanding of mathematics.				

Seeing Structure and Generalizing

For student mastery of College- and Career-Readiness Standards, the instructional materials will include multiple strategies that provide students opportunities to:

	16. Look closely to discern a pattern or structure.				
	17. Look both for general methods and for shortcuts.				
	18. Make sense of quantities and their relationships in problem situations.				

	19. Assess and evaluate the type of mathematics needed to solve a particular problem.				
	20. Apply appropriate mathematical skills to unfamiliar complex problems.				
	21. Maintain the oversight of the process of solving a problem while attending to the details.				
Instructor Resources and Tools					
The instructional materials provide:					
	22. An ongoing spiraling approach.				
	23. Ongoing diagnostic, formative, and summative assessments.				
	24. A variety of assessment formats, including performance tasks, datadependent questions, and open-ended questions.				
	25. Necessary mathematical content knowledge, pedagogy, and management techniques for educators to guide learning experiences.				
	26. Presentation tools for educators to guide learning.				
	27. Multiple research-based strategies for differentiation, intervention, and enrichment to support all learners.				

SPECIFIC EVALUATION CRITERIA

2018-2024
Group VI - Mathematics
High School Algebra I for $8^{\text {th }}$ Grade

Mathematics - High School Algebra I for 8 $^{\text {th }}$ Grade

All West Virginia teachers are responsible for classroom instruction that integrates content standards and mathematical habits of mind. Students in this course will focus on five critical units that deepen and extend understanding of linear and exponential relationships by contrasting them with each other and by applying linear models to data that exhibit a linear trend, and students engage in methods for analyzing, solving, and using quadratic functions. Mathematical habits of mind, which should be integrated in these content areas, include: making sense of problems and persevering in solving them, reasoning abstractly and quantitatively; constructing viable arguments and critiquing the reasoning of others; modeling with mathematics; using appropriate tools strategically; attending to precision, looking for and making use of structure; and looking for and expressing regularity in repeated reasoning. Students will continue developing mathematical proficiency in a developmentally-appropriate progressions of standards. Continuing the skill progressions from previous courses, the following chart represents the mathematical understandings that will be developed:

Relationships between Quantities and Reasoning with Equations

- Solve problems with a wide range of units and solve problems by thinking about units. (e.g., The Trans Alaska Pipeline System is 800 miles long and cost $\$ 8$ billion to build. Divide one of these numbers by the other. What is the meaning of the answer? Greenland has a population of 56,700 and a land area of $2,175,600$ square kilometers. By what factor is the population density of the United States, 80 persons per square mile, larger than the population density of Greenland?)

Descriptive Statistics

- Use linear regression techniques to describe the relationship between quantities and assess the fit of the model. (e.g., Use the high school and university grades for 250 students to create a model that can be used to predict a student's university GPA based on his high school GPA.)
Quadratic Functions and Modeling
- Solve real-world and mathematical problems by writing and solving nonlinear equations, such as quadratic equations ($a x^{2}+b x+c=0$).

Linear and Exponential Relationships

- Understand contextual relationships of variables and constants. (e.g., Annie is picking apples with her sister. The number of apples in her basket is described by $\mathrm{n}=22 \mathrm{t}+12$, where t is the number of minutes Annie spends picking apples. What do the numbers 22 and 12 tell you about Annie's apple picking?)

Expressions and Equations

- Interpret algebraic expressions and transform them purposefully to solve problems. (e.g., In solving a problem about a loan with interest rate r and principal P , seeing the expression $\mathrm{P}(1+r)^{n}$ as a product of P with a factor not depending on P.)

For student mastery of content standards, the instructional materials will provide students with the opportunity to

(Vendor/Publisher) SPECIFIC LOCATION OF CONTENT WITHIN PRODUCTS	(IMR Committee) Responses				
	$\mathbf{I}=$ In-depth, $\mathbf{A}=$ Adequate, $\mathbf{M}=$ Minimal, $\mathbf{N}=$ Nonexistent	I	A	M	N
Relationships between Quantities					

Reason quantitatively and use units to solve problems.					
	1. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.				
	2. Define appropriate quantities for the purpose of descriptive modeling. Instructional Note: Working with quantities and the relationships between them provides grounding for work with expressions, equations, and functions.				
	3. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.				
Interpret the structure of expressions.					
	4. Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as a single entity. (e.g., Interpret $\mathrm{P}(1+r)^{\mathrm{n}}$ as the product of P and a factor not depending on P. Instructional Note: Limit to linear expressions and to exponential expressions with integer exponents.				
Create equations that describe numbers or relationships.					
	5. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. Instructional Note: Limit to linear and exponential equations, and, in the case of exponential equations, limit to situations requiring evaluation of exponential functions at integer inputs.				
	6. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Instructional Note: Limit to linear and exponential equations, and, in the case of exponential equations, limit to situations requiring evaluation of exponential functions at integer inputs.				
	7. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. (e.g., Represent inequalities				

	describing nutritional and cost constraints on combinations of different foods.) Instructional Note: Limit to linear equations and inequalities.				
	8. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (e.g., Rearrange Ohm's law $\mathrm{V}=\mathrm{IR}$ to highlight resistance R.) Instructional Note: Limit to formulas with a linear focus.				
Understand solving equations as a process of reasoning and explain the reasoning.					
	9. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. Instructional Note: Students should focus on and master linear equations and be able to extend and apply their reasoning to other types of equations in future courses. Students will solve exponential equations with logarithms in Algebra II.				
Solve equations and inequalities in one variable.					
	10. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. Instructional Note: Extend earlier work with solving linear equations to solving linear inequalities in one variable and to solving literal equations that are linear in the variable being solved for. Include simple exponential equations that rely only on application of the laws of exponents, such as $5^{x}=125$ or $2^{x}=$ $1 / 16$.				
Linear and Exponential Relationships					
Extend the properties of exponents to rational exponents.					
	11. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. (e.g., We define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}=5^{(1 / 3) 3}$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal 5.) Instructional Note: Address this standard before discussing exponential functions with continuous domains.				
	12. Rewrite expressions involving radicals and rational exponents using the properties of exponents. Instructional Note: Address this standard before discussing exponential functions with continuous domains.				

	17. Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately (e.g., using technology to graph the functions, make tables of values or find successive approximations). Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential and logarithmic functions. Instructional Note: Focus on cases where $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are linear or exponential.					
	18. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.					
Define, evaluate and compare functions. Instructional Note: While this content is likely subsumed by M.A18.22-24 and M.A18.30a it could be used for scaffolding instruction to the more sophisticated content found there.						
	19. Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.					
	20. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). (e.g., Given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.)					
	21. Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. (e.g., The function $\mathrm{A}=\mathrm{s}^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and (3,9), which are not on a straight line.)					
Understand the concept of a function and use function notation.						
	22. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$. Instructional Note: Students should experience a variety of types of situations modeled by functions. Detailed analysis of any particular class of function at this stage is not advised. Students should apply these concepts throughout their future mathematics courses. Constrain examples to linear functions and exponential functions having integral domains.					

	23. Use function notation, evaluate functions for inputs in their domains and interpret statements that use function notation in terms of a context. Instructional Note: Students should experience a variety of types of situations modeled by functions. Detailed analysis of any particular class of function at this stage is not advised. Students should apply these concepts throughout their future mathematics courses. Draw examples from linear functions and exponential functions having integral domains.						
	24. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. (e.g., The Fibonacci sequence is defined recursively by $f(0)=f(1)=1, f(n+1)=f(n)+f(n-1)$ for $n \geq 1$. Instructional Note: Students should experience a variety of types of situations modeled by functions. Detailed analysis of any particular class of function at this stage is not advised. Students should apply these concepts throughout their future mathematics courses. Draw examples from linear functions and exponential functions having integral domains. Draw connection to M.A1HS.27, which requires students to write arithmetic and geometric sequences. Emphasize arithmetic and geometric sequences as examples of linear and exponential functions.						
Use functions to model relationships Instructional Note: While this conten instruction to the more sophisticated	en quantities. ely subsumed by M.A18.27and M.A18.32a, it could be used for scaffolding nt found there.						
	25. Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.						
	26. Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.						
Interpret functions that arise in applica	in terms of a context.						
	27. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Instructional Note: Focus on linear and exponential functions.						

	28. Relate the domain of a function to its graph and where applicable, to the quantitative relationship it describes. (e.g., If the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.) Instructional Note: Focus on linear and exponential functions.				
	29. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. Instructional Note: Focus on linear functions and exponential functions whose domain is a subset of the integers. The Unit on Quadratic Functions and Modeling in this course and the Algebra II course address other types of functions.				
Analyze functions using different representations.					
	30. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. a. Graph linear and quadratic functions and show intercepts, maxima, and minima. b. Graph exponential and logarithmic functions, showing intercepts and end behavior and trigonometric functions, showing period, midline and amplitude. Instructional Note: Focus on linear and exponential functions. Include comparisons of two functions presented algebraically. For example, compare the growth of two linear functions, or two exponential functions such as $y=3^{n}$ and $y=100^{2 n}$)				
	31. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). (e.g., Given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.) Instructional Note: Focus on linear and exponential functions. Include comparisons of two functions presented algebraically. For example, compare the growth of two linear functions, or two exponential functions such as $y=3^{n}$ and $y=100^{2 n}$)				
Build a function that models a relationship between two quantities.					
	32. Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context.				

	b. Combine standard function types using arithmetic operations. (e.g., Build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.) Instructional Note: Limit to linear and exponential functions.				
	33. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. Instructional Note: Limit to linear and exponential functions. Connect arithmetic sequences to linear functions and geometric sequences to exponential functions.				
Build new functions from existing functions.					
	34. Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. Instructional Note: Focus on vertical translations of graphs of linear and exponential functions. Relate the vertical translation of a linear function to its y-intercept. While applying other transformations to a linear graph is appropriate at this level, it may be difficult for students to identify or distinguish between the effects of the other transformations included in this standard.				
Construct and compare linear, quadratic, and exponential models and solve problems.					
	35. Distinguish between situations that can be modeled with linear functions and with exponential functions. a. Prove that linear functions grow by equal differences over equal intervals; exponential functions grow by equal factors over equal intervals. b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.				
	36. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship or two input-output pairs (include reading these from a table). Instructional Note: In constructing linear functions, draw on and consolidate previous work in Grade 8 on finding equations for lines and linear functions.				

	43. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.				
	44. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. (e.g., In a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.)				
	45. Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. (e.g., Collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?)				
Summarize, represent, and interpret data on two categorical and quantitative variables.					
	46. Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal and conditional relative frequencies). Recognize possible associations and trends in the data.				
	47. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and exponential models. b. Informally assess the fit of a function by plotting and analyzing residuals. Instructional Note: Focus should be on situations for which linear models are appropriate. c. Fit a linear function for scatter plots that suggest a linear association. Instructional Note: Students take a more sophisticated look at using a linear function to model the relationship between two numerical variables.				

	In addition to fitting a line to data, students assess how well the model fits by analyzing residuals.					
Interpret linear models.						
	48. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. Instructional Note: Build on students' work with linear relationships in eighth grade and introduce the correlation coefficient. The focus here is on the computation and interpretation of the correlation coefficient as a measure of how well the data fit the relationship.					
	49. Compute (using technology) and interpret the correlation coefficient of a linear fit. Instructional Note: Build on students' work with linear relationships in eighth grade and introduce the correlation coefficient. The focus here is on the computation and interpretation of the correlation coefficient as a measure of how well the data fit the relationship.					
	50. Distinguish between correlation and causation. Instructional Note: The important distinction between a statistical relationship and a cause-andeffect relationship is the focus.					
Expressions and Equations						
Interpret the structure of equations.						
	51. Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P . Instructional Note: Exponents are extended from the integer exponents found in the unit on Relationships between Quantities and Reasoning with Equations to rational exponents focusing on those that represent square or cube roots. Instructional Note: Focus on quadratic and exponential expressions. For M.A18.51b, exponents are extended from integer found in the unit on Relationships between Quantities to rational exponents focusing on those that represent square roots and cube roots.					

	52. Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.				
Write expressions in equivalent forms to solve problems.					
	53. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. a. Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15^{t} can be rewritten as $\left(1.15^{1 / 12}\right)^{12 t} \approx 1.012^{12 t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%. Instructional Note: It is important to balance conceptual understanding and procedural fluency in work with equivalent expressions. For example, development of skill in factoring and completing the square goes hand-inhand with understanding what different forms of a quadratic expression reveal.				
Perform arithmetic operations on polynomials.					
	54. Recognize that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. Instructional Note: Focus on polynomial expressions that simplify to forms that are linear or quadratic in a positive integer power of x.				
Create equations that describe numbers or relationships.					
	55. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. Instructional Note: Extend work on linear and exponential equations in the Relationships between Quantities and Reasoning with Equations unit to quadratic equations.				
	56. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Instructional Note: Extend work on linear and exponential				

	equations in the Relationships between Quantities and Reasoning with Equations unit to quadratic equations.				
	57. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (e.g., Rearrange Ohm's law $\mathrm{V}=\mathrm{IR}$ to highlight resistance R. Instructional Note: Extend work on linear and exponential equations in the Relationships between Quantities and Reasoning with Equations unit to quadratic equations. Extend this standard to formulas involving squared variables.				
Solve equations and inequalities in one variable.					
	58. Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm b i$ for real numbers a and b. Instructional Note: Students should learn of the existence of the complex number system, but will not solve quadratics with complex solutions until Algebra II.				
Solve systems of equations.					
	59. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x^{2}+y^{2}=$ 3. Instructional Note: Include systems consisting of one linear and one quadratic equation. Include systems that lead to work with fractions. For example, finding the intersections between $x^{2}+y^{2}=1$ and $y=(x+1) / 2$ leads to the point $(3 / 5,4 / 5)$ on the unit circle, corresponding to the Pythagorean triple $3^{2}+4^{2}=5^{2}$.				
Quadratic Functions and Modeling					
Use properties of rational and irrational numbers.					
	60. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and				

	that the product of a nonzero rational number and an irrational number is irrational. Instructional Note: Connect to physical situations (e.g., finding the perimeter of a square of area 2).						
Understand and apply the Pythagorean theorem.							
	61. Explain a proof of the Pythagorean Theorem and its converse						
	62. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. Instructional Note: Discuss applications of the Pythagorean theorem and its connections to radicals, rational exponents, and irrational numbers.						
	63. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. Instructional Note: Discuss applications of the Pythagorean theorem and its connections to radicals, rational exponents, and irrational numbers.						
Interpret functions that arise in applications in terms of a context.							
	64. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Instructional Note: Focus on quadratic functions; compare with linear and exponential functions studied in the Unit on Linear and Exponential Relationships.						
	65. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. Instructional Note: Focus on quadratic functions; compare with linear and exponential functions studied in the Unit on Linear and Exponential Relationships.						
	66. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. Instructional Note: Focus on quadratic functions; compare with linear and exponential functions studied in the Unit on Linear and Exponential Relationships.						

	70. Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. Instructional Note: Focus on situations that exhibit a quadratic relationship.				
Build new functions from existing functions.					
	71. Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. Instructional Note: Focus on quadratic functions, and consider including absolute value functions.				
	72. Find inverse functions. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x^{3}$ or $f(x)=(x+1) /(x-1)$ for $x \neq 1$. Instructional Note: Focus on linear functions but consider simple situations where the domain of the function must be restricted in order for the inverse to exist, such as $f(x)=x^{2}, x>0$.				
Construct and compare linear, quadratic and exponential models and solve problems.					
	73. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. Instructional Note: Compare linear and exponential growth to quadratic growth.				

