PUBLISHER:			
SUBJECT:		SPECIFIC GRADE:	
COURSE:		TITLE	
COPYRIGHT:			
SE ISBN:		TE ISBN:	

NON-NEGOTIABLE EVALUATION CRITERIA

```
    2018-2024
Group VI - Mathematics
    Grade }
```


Equity, Accessibility and Format

Yes	No	CRITERIA	NOTES		
	1. INTER-ETHNIC The instructional materials meets the requirements of inter-ethnic: concepts, content and illustrations, as set by WV Board of Education Policy 2445.41.				
	2.EQUAL OPPORTUNITY The instructional material meets the requirements of equal opportunity: concepts, content, illustration, heritage, roles contributions, experiences and achievements of males and females in American and other cultures.				
	3. FORMAT				
This resource includes an interactive electronic/digital					
component for students.				\quad	4. BIASThe instructional material is free of political bias.
:---					
5.COMMON CORE The instructional materials do not reference Common Core academic standards. (WV Code §18-2E-1b-1).					

GENERAL EVALUATION CRITERIA

2018-2024

Group VI - Mathematics
 Grade 8

The general evaluation criteria apply to each grade level and are to be evaluated for each grade level unless otherwise specified. These criteria consist of information critical to the development of all grade levels. In reading the general evaluation criteria and subsequent specific grade level criteria, e.g. means "examples of" and i.e. means that "each of" those items must be addressed. Eighty percent of the general and eighty percent of the specific criteria must be met with I (in-depth) or A (adequate) in order to be recommended.

(Vendor/Publisher) SPECIFIC LOCATION OF CONTENT	(IMR Committee) Responses				
	$\mathbf{I}=$ In-depth, $\mathbf{A}=$ Adequate, $\mathbf{M}=$ Minimal, $\mathbf{N}=$ Nonexistent	1	A	M	N
	In addition to alignment of Content Standards, materials must also clearly connect to Learning for the $21^{\text {st }}$ Century which includes opportunities for students to develop:				
Communication and Reasoning					
For student mastery of College- and Career-Readiness Standards, the instructional materials will include multiple strategies that provide students opportunities to:					
	1. Explain the correspondence between equations, verbal descriptions, tables, and graphs.				
	2. Make conjectures and build a logical progression of statements to explore the truth of their conjectures.				
	3. Distinguish correct logic or reasoning from that which is flawed.				
	4. Justify their conclusions, communicate them to others, and respond to the arguments of others.				
	5. Evaluate the reasonableness of intermediate results.				
	6. Communicate precisely to others using appropriate mathematical language. When more than one term can describe a concept, use				

	vocabulary from the West Virginia College- and Career-Readiness Standards.				
	7. Articulate thoughts and ideas through oral, written, and multimedia communications.				

Mathematical Modeling

For student mastery of College- and Career-Readiness Standards, the instructional materials will include multiple strategies that provide students opportunities to:

	8. Apply mathematics to solve problems in everyday life.				
	9. Use concrete objects, pictures, diagrams, or graphs to help conceptualize and solve a problem.				
	10. Use multiple representations.				
	11. Use a variety of appropriate tools strategically. 12. Calculate accurately and efficiently, express numerical answers with a degree precision appropriate for the problem context.				
	13. Interpret their mathematical results in the context of the situation.				
	14. Reflect on whether the results make sense, improving the model if it has not serve its purpose.				
	15. Explore careers which apply the understanding of mathematics.				

Seeing Structure and Generalizing

For student mastery of College- and Career-Readiness Standards, the instructional materials will include multiple strategies that provide students opportunities to:

	16. Look closely to discern a pattern or structure.				
	17. Look both for general methods and for shortcuts.				
	18. Make sense of quantities and their relationships in problem situations.				

	19. Assess and evaluate the type of mathematics needed to solve a particular problem.				
	20. Apply appropriate mathematical skills to unfamiliar complex problems.				
	21. Maintain the oversight of the process of solving a problem while attending to the details.				
Instructor Resources and Tools					
The instructional materials provide:					
	22. An ongoing spiraling approach.				
	23. Ongoing diagnostic, formative, and summative assessments.				
	24. A variety of assessment formats, including performance tasks, datadependent questions, and open-ended questions.				
	25. Necessary mathematical content knowledge, pedagogy, and management techniques for educators to guide learning experiences.				
	26. Presentation tools for educators to guide learning.				
	27. Multiple research-based strategies for differentiation, intervention, and enrichment to support all learners.				

SPECIFIC EVALUATION CRITERIA

2018-2024

Group VI - Mathematics

Grade 8
All West Virginia teachers are responsible for classroom instruction that integrates content standards and mathematical habits of mind. Students in the eighth grade will focus on three critical areas: 1) formulating and reasoning about expressions and equations, including modeling an association in bivariate data with a linear equation, and solving linear equations and systems of linear equations; (2) grasping the concept of a function and using functions to describe quantitative relationships; (3) analyzing two- and three-dimensional space and figures using distance, angle, similarity and congruence and understanding and applying the Pythagorean Theorem. Mathematical habits of mind, which should be integrated in these content areas, include: making sense of problems and persevering in solving them, reasoning abstractly and quantitatively; constructing viable arguments and critiquing the reasoning of others; modeling with mathematics; using appropriate tools strategically; attending to precision, looking for and making use of structure; and looking for and expressing regularity in repeated reasoning. Students in eighth grade will continue developing mathematical proficiency in a developmentally-appropriate progressions of standards. Continuing the skill progressions from seventh grade, the following chart represents the mathematical understandings that will be developed in eighth grade:

The Number System

- Understand that every number has a decimal expansion and use these to compare the size of irrational numbers.

Functions

- Understand slope, and relating linear equations in two variables to lines in the coordinate plane.
- Understand functions as rules that assign a unique output number to each input number; use linear functions to model relationships.
Statistics and Probability
- Analyze statistical relationships by using a best-fit line (a straight line that models an association between two quantities).

Expressions and Equations

- Work with positive and negative exponents, square root and cube root symbols, and scientific notation (e.g., Evaluate $\sqrt{36}+64$; estimate world population as 7×10^{9}).
- Solve linear equations (e.g., $-x+5(x+1 / 3)=2 x-8$); solve pairs of linear equations (e.g., $x+6 y=-1$ and $2 x-2 y=12$); and write equations to solve related word problems.

Geometry

- Understand congruence and similarity using physical models, transparencies, or geometry software (e.g., Given two congruent figures, show how to obtain one from the other by a sequence of rotations, translations, and/or reflections).

For student mastery of content standards, the instructional materials will provide students with the opportunity to

(Vendor/Publisher) SPECIFIC LOCATION OF	(IMR Committee) Responses				
	$\mathbf{I}=$ In-depth, $\mathbf{A}=$ Adequate, $\mathbf{M}=$ Minimal, $\mathbf{N}=$ Nonexistent	I	A	M	N
The Number System					
Know that there are numbers that are not rational, and approximate them by rational numbers.					
	1. Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually and convert a decimal expansion which repeats eventually into a rational number. Instructional Note: A decimal expansion that repeats the digit 0 is often referred to as a "terminating decimal."				
	2. Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram and estimate the value of expressions such as π^{2}. (e.g., By truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue on to get better approximations.)				
Expressions and Equations					
Work with radicals and integer exponents.					
	3. Know and apply the properties of integer exponents to generate equivalent numerical expressions. (e.g., $3^{2} \times 3^{-5}=3^{-3}=1 / 3^{3}=1 / 27$.)				
	4. Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.				
	5. Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. (e.g., Estimate the population of the United States as 3×10^{8} and the population of the				

Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.					
	24. Know the formulas for the volumes of cones, cylinders and spheres and use them to solve real-world and mathematical problems.				
Statistics and Probability					
Investigate patterns of association in bivariate data.					
	25. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association and nonlinear association.				
	26. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line and informally assess the model fit by judging the closeness of the data points to the line.				
	27. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. (e.g., In a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.)				
	28. Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. (e.g., Collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?)				

