PUBLISHER:			
SUBJECT:		SPECIFIC GRADE:	
COURSE:		TITLE	
COPYRIGHT:			
SE ISBN:		TE ISBN:	

NON-NEGOTIABLE EVALUATION CRITERIA

2018-2024

Group VI - Mathematics

High School STEM Readiness

Equity, Accessibility and Format

Yes	No	CRITERIA	NOTES
		1. INTER-ETHNIC The instructional materials meets the requirements of inter-ethnic: concepts, content and illustrations, as set by WV Board of Education Policy 2445.41.	
		2. EQUAL OPPORTUNITY The instructional material meets the requirements of equal opportunity: concepts, content, illustration, heritage, roles contributions, experiences and achievements of males and females in American and other cultures.	
		3. FORMAT This resource includes an interactive electronic/digital component for students.	
		4. BIAS The instructional material is free of political bias.	
		5. COMMON CORE The instructional materials do not reference Common Core academic standards. (WV Code §18-2E-1b-1).	

GENERAL EVALUATION CRITERIA

2018-2024

Group VI - Mathematics

High School STEM Readiness

The general evaluation criteria apply to each grade level and are to be evaluated for each grade level unless otherwise specified. These criteria consist of information critical to the development of all grade levels. In reading the general evaluation criteria and subsequent specific grade level criteria, e.g. means "examples of" and i.e. means that "each of" those items must be addressed. Eighty percent of the general and eighty percent of the specific criteria must be met with I (in-depth) or A (adequate) in order to be recommended.

(Vendor/Publisher) SPECIFIC LOCATION OF CONTENT	(IMR Committee) Responses				
	$\mathbf{I}=$ In-depth, $\mathbf{A}=$ Adequate, $\mathbf{M}=$ Minimal, $\mathbf{N}=$ Nonexistent	1	A	M	N
	In addition to alignment of Content Standards, materials must also clearly connect to Learning for the $21^{\text {st }}$ Century which includes opportunities for students to develop:				
Communication and Reasoning					
For student mastery of College- and Career-Readiness Standards, the instructional materials will include multiple strategies that provide students opportunities to:					
	1. Explain the correspondence between equations, verbal descriptions, tables, and graphs.				
	2. Make conjectures and build a logical progression of statements to explore the truth of their conjectures.				
	3. Distinguish correct logic or reasoning from that which is flawed.				
	4. Justify their conclusions, communicate them to others, and respond to the arguments of others.				
	5. Evaluate the reasonableness of intermediate results.				
	6. Communicate precisely to others using appropriate mathematical language. When more than one term can describe a concept, use				

	vocabulary from the West Virginia College- and Career-Readiness Standards.				
	7. Articulate thoughts and ideas through oral, written, and multimedia communications.				

Mathematical Modeling

For student mastery of College- and Career-Readiness Standards, the instructional materials will include multiple strategies that provide students opportunities to:

	8. Apply mathematics to solve problems in everyday life.				
	9. Use concrete objects, pictures, diagrams, or graphs to help conceptualize and solve a problem.				
	10. Use multiple representations.				
	11. Use a variety of appropriate tools strategically. 12. Calculate accurately and efficiently, express numerical answers with a degree precision appropriate for the problem context.				
	13. Interpret their mathematical results in the context of the situation.				
	14. Reflect on whether the results make sense, improving the model if it has not serve its purpose.				
	15. Explore careers which apply the understanding of mathematics.				

Seeing Structure and Generalizing

For student mastery of College- and Career-Readiness Standards, the instructional materials will include multiple strategies that provide students opportunities to:

	16. Look closely to discern a pattern or structure.				
	17. Look both for general methods and for shortcuts.				
	18. Make sense of quantities and their relationships in problem situations.				

	19. Assess and evaluate the type of mathematics needed to solve a particular problem.				
	20. Apply appropriate mathematical skills to unfamiliar complex problems.				
	21. Maintain the oversight of the process of solving a problem while attending to the details.				
Instructor Resources and Tools					
The instructional materials provide:					
	22. An ongoing spiraling approach.				
	23. Ongoing diagnostic, formative, and summative assessments.				
	24. A variety of assessment formats, including performance tasks, datadependent questions, and open-ended questions.				
	25. Necessary mathematical content knowledge, pedagogy, and management techniques for educators to guide learning experiences.				
	26. Presentation tools for educators to guide learning.				
	27. Multiple research-based strategies for differentiation, intervention, and enrichment to support all learners.				

SPECIFIC EVALUATION CRITERIA

2018-2024
 Group VI - Mathematics High School STEM Readiness

All West Virginia teachers are responsible for classroom instruction that integrates content standards and objectives and mathematical habits of mind. This course is designed for students who have completed the Math III (LA) course and subsequently decided they are interested in pursuing a STEM career. It includes standards that would have been covered in Mathematics III (STEM) but not in Mathematics III (LA) (i.e. standards that are marked with a " + "), selected topics from the Mathematics IV course, and topics drawing from standards covered in Mathematics I and Mathematics II as needed for coherence. Mathematical habits of mind, which should be integrated in these content areas, include: making sense of problems and persevering in solving them, reasoning abstractly and quantitatively; constructing viable arguments and critiquing the reasoning of others; modeling with mathematics; using appropriate tools strategically; attending to precision, looking for and making use of structure; and looking for and expressing regularity in repeated reasoning. Students will continue developing mathematical proficiency in a developmentally-appropriate progressions of standards. Continuing the skill progressions from previous courses, the following chart represents the mathematical understandings that will be developed:

Arithmetic and Algebra of Complex Numbers

- Understand that the arithmetic and algebra of expressions involving rational numbers is governed by the same rules as the arithmetic and algebra of real numbers.
Probability for Decisions
- Make inferences and justify conclusions from sample surveys, experiments, and observational studies.
Functions and Modeling
- Analyze real-world situations using mathematics to understand the situation better and optimize, troubleshoot, or make an informed decision. (e.g., Estimate water and food needs in a disaster area, or use volume formulas and graphs to find an optimal size for an industrial package.)

Polynomial, Rational, and Radical Relationships

- Derive the formula for the sum of a geometric series, and use the formula to solve problems. (e.g., Calculate mortgage payments.)

Trigonometry of General Triangles

- Apply knowledge of the Law of Sines and the Law of Cosines to determine distances in realistic situations. (e.g., Determine heights of inaccessible objects.)

For student mastery of content standards, the instructional materials will provide students with the opportunity to

(Vendor/Publisher) SPECIFIC LOCATION OF CONTENT WITHIN PRODUCTS	(IMR Committee) Responses				
	I=In-depth, $\mathbf{A}=$ Adequate, $\mathbf{M}=$ Minimal, $\mathbf{N}=$ Nonexistent	I	A	M	N
Arithmetic and Algebra of Complex Numbers					
Perform arithmetic operations with complex numbers.					

	4. Know and apply the Binomial Theorem for the expansion of $(x+y)^{n}$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.				
Rewrite rational expressions.					
	5. Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication and division by a nonzero rational expression; add, subtract, multiply and divide rational expressions.				
Probability for Decisions					
Use probability to evaluate outcomes of decisions.					
	6. Use probabilities to make fair decisions (e.g. drawing by lot or using a random number generator).				
	7. Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, and/or pulling a hockey goalie at the end of a game).				
Trigonometry of General Triangles					
Apply trigonometry to general triangles.					
	8. Derive the formula $A=1 / 2 a b \sin (C)$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.				
	9. Prove the Laws of Sines and Cosines and use them to solve problems.				
	10. Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems or resultant forces).				
Functions and Modeling					
Analyze functions using different representations.					

	17. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.				
	18. Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available and showing end behavior.				
	19. Graph exponential and logarithmic functions, showing intercepts and end behavior and trigonometric functions, showing period, midline, and amplitude.				
Building a function that models a relationship between two quantities.					
	20. Write a function that describes a relationship between two quantities.				
	21. Compose functions. (e.g., If $\mathrm{T}(\mathrm{y})$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time.)				
Build new functions from existing functions.					
	22. Find inverse functions.				
	23. Verify by composition that one function is the inverse of another.				
	24. Read values of an inverse function from a graph or a table, given that the function has an inverse.				
	25. Produce an invertible function from a non-invertible function by restricting the domain.				
	26. Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.				
Extend the domain of trigonometric functions using the unit circle.					
	27. Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi / 3, \pi / 4$ and $\pi / 6$, and use the unit circle to express the values of sine, cosine, and tangent for $\pi-x, \pi+x$, and $2 \pi-x$ in terms of				

	their values for x , where x is any real number.				
	28. Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.				
Model periodic phenomena using trigonometric functions.	29. Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.				
	30. Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context.				
Prove and apply trigonometric identities.	31. Prove the addition and subtraction formulas for sine, cosine and tangent and use them to solve problems.				

