PUBLISHER:			
SUBJECT:		SPECIFIC GRADE:	
COURSE:		TITLE	
COPYRIGHT:			
SE ISBN:		TE ISBN:	

NON-NEGOTIABLE EVALUATION CRITERIA

2018-2024

Group VI - Mathematics

Transition Mathematics for Seniors

Equity, Accessibility and Format

Yes	No	CRITERIA	NOTES
		1. INTER-ETHNIC The instructional materials meets the requirements of inter-ethnic: concepts, content and illustrations, as set by WV Board of Education Policy 2445.41.	
		2. EQUAL OPPORTUNITY The instructional material meets the requirements of equal opportunity: concepts, content, illustration, heritage, roles contributions, experiences and achievements of males and females in American and other cultures.	
		3. FORMAT This resource includes an interactive electronic/digital component for students.	
		4. BIAS The instructional material is free of political bias.	
		5. COMMON CORE The instructional materials do not reference Common Core academic standards. (WV Code §18-2E-1b-1).	

GENERAL EVALUATION CRITERIA

2018-2024

Group VI - Mathematics

Transition Mathematics for Seniors

The general evaluation criteria apply to each grade level and are to be evaluated for each grade level unless otherwise specified. These criteria consist of information critical to the development of all grade levels. In reading the general evaluation criteria and subsequent specific grade level criteria, e.g. means "examples of" and i.e. means that "each of" those items must be addressed. Eighty percent of the general and eighty percent of the specific criteria must be met with I (in-depth) or A (adequate) in order to be recommended.

(Vendor/Publisher) SPECIFIC LOCATION OF CONTENT	(IMR Committee) Responses				
	$\mathbf{I}=$ In-depth, $\mathbf{A}=$ Adequate, $\mathbf{M}=$ Minimal, $\mathbf{N}=$ Nonexistent	I	A	M	N
	In addition to alignment of Content Standards, materials must also clearly connect to Learning for the $215^{\text {st }}$ Century which includes opportunities for students to develop:				
Communication and Reasoning					
For student mastery of College- and Career-Readiness Standards, the instructional materials will include multiple strategies that provide students opportunities to:					
	1. Explain the correspondence between equations, verbal descriptions, tables, and graphs.				
	2. Make conjectures and build a logical progression of statements to explore the truth of their conjectures.				
	3. Distinguish correct logic or reasoning from that which is flawed.				
	4. Justify their conclusions, communicate them to others, and respond to the arguments of others.				
	5. Evaluate the reasonableness of intermediate results.				
	6. Communicate precisely to others using appropriate mathematical language. When more than one term can describe a concept, use				

	vocabulary from the West Virginia College- and Career-Readiness Standards.				
	7. Articulate thoughts and ideas through oral, written, and multimedia communications.				

Mathematical Modeling

For student mastery of College- and Career-Readiness Standards, the instructional materials will include multiple strategies that provide students opportunities to:

	8. Apply mathematics to solve problems in everyday life.				
	9. Use concrete objects, pictures, diagrams, or graphs to help conceptualize and solve a problem.				
	10. Use multiple representations.				
	11. Use a variety of appropriate tools strategically. 12. Calculate accurately and efficiently, express numerical answers with a degree precision appropriate for the problem context.				
	13. Interpret their mathematical results in the context of the situation.				
	14. Reflect on whether the results make sense, improving the model if it has not serve its purpose.				
	15. Explore careers which apply the understanding of mathematics.				

Seeing Structure and Generalizing

For student mastery of College- and Career-Readiness Standards, the instructional materials will include multiple strategies that provide students opportunities to:

	16. Look closely to discern a pattern or structure.				
	17. Look both for general methods and for shortcuts.				
	18. Make sense of quantities and their relationships in problem situations.				

	19. Assess and evaluate the type of mathematics needed to solve a particular problem.				
	20. Apply appropriate mathematical skills to unfamiliar complex problems.				
	21. Maintain the oversight of the process of solving a problem while attending to the details.				
Instructor Resources and Tools					
The instructional materials provide:					
	22. An ongoing spiraling approach.				
	23. Ongoing diagnostic, formative, and summative assessments.				
	24. A variety of assessment formats, including performance tasks, datadependent questions, and open-ended questions.				
	25. Necessary mathematical content knowledge, pedagogy, and management techniques for educators to guide learning experiences.				
	26. Presentation tools for educators to guide learning.				
	27. Multiple research-based strategies for differentiation, intervention, and enrichment to support all learners.				

SPECIFIC EVALUATION CRITERIA

2018-2024
 Group VI - Mathematics Transition Mathematics for Seniors

All West Virginia teachers are responsible for classroom instruction that integrates content standards and mathematical habits of mind. Transition Mathematics for Seniors prepares students for their entry-level credit-bearing liberal studies mathematics course at the post-secondary level. Students will solidify their quantitative literacy by enhancing numeracy and problem solving skills as they investigate and use the fundamental concepts of algebra, geometry, and introductory trigonometry. Mathematical habits of mind, which should be integrated in these content areas, include: making sense of problems and persevering in solving them, reasoning abstractly and quantitatively; constructing viable arguments and critiquing the reasoning of others; modeling with mathematics; using appropriate tools strategically; attending to precision, looking for and making use of structure; and looking for and expressing regularity in repeated reasoning. Students will continue developing mathematical proficiency in a developmentally-appropriate progressions of standards. Continuing the skill progressions from previous courses, the following chart represents the mathematical understandings that will be developed:
$\left.\begin{array}{|l|l|}\hline \text { Number and Quantity: } & \begin{array}{l}\text { Algebra: } \\ \text { The Real Number System } \\ \text { The Complex Number System }\end{array} \\ \begin{array}{l|l}\text { Seeing Structure in Expressions } \\ \text { Arithmetic with Polynomials and Rational Expressions } \\ \text { Creating Equations }\end{array} \\ \text { Reasoning with Equations and Inequalities }\end{array}\right\}$

For student mastery of content standards, the instructional materials will provide students with the opportunity to

(Vendor/Publisher) SPECIFIC LOCATION OF	(IMR Committee) Responses				
	$\mathbf{I}=$ In-depth, $\mathbf{A}=$ Adequate, $\mathbf{M}=$ Minimal, $\mathbf{N}=$ Nonexistent	I	A	M	N
Number and Quantity - The Real Number System					
Extend the properties of exponents to rational exponents.					
	1. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.				
	2. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.				
Number and Quantity - The Real Number System					
Use complex numbers in polynomial identities and equations.					
	3. Solve quadratic equations with real coefficients that have complex solutions.				
Algebra - Seeing Structure in Expressions					
Interpret the structure of expressions.					
	4. Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.				
Write expressions in equivalent forms to solve problems.					
	5. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. a. Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.				

	6. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems.				
Understand the connections between proportional relationship, lines, and linear equations.					
	7. Graph proportional relationships, interpreting the unit rates as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.				
	8. Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plan; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.				
	9. Solve linear equations in one variable.				
Algebra - Arithmetic with Polynomials and Rational Expressions					
Perform arithmetic operations on polynomials.					
	10. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract and multiply polynomials.				
Algebra - Creating Equations					
Create equations that describe numbers or relationships.					
	11. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions and simple rational and exponential functions.				
	12. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.				
	13. Represent constraints by equations or inequalities and by systems of equations and/or inequalities and interpret solutions as viable or nonviable options in a modeling context. For example, represent				

	inequalities describing nutritional and cost constraints on combinations of different foods.				
	14. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.				
Algebra - Reasoning with Equations and Inequalities					
Understand solving equations as a process of reasoning and explain the reasoning.					
	15. Solve simple rational and radical equations in one variable and give examples showing how extraneous solutions may arise.				
Solve equations and inequalities in one variable.					
	16. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.				
	17. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.				
	18. Solve quadratic equations in one variable. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $\mathrm{a} \pm \mathrm{bi}$ for real numbers a and b .				
Solve systems of equations.					
	19. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.				
	20. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.				

	28. Distinguish between situations that can be modeled with linear functions and with exponential functions.				
Analyze functions using different representations.					
	29. Interpret the equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ as defining a linear function, whose graph is a straight line, give examples of functions that are not linear.				
	30. Describe qualitatively the functional relationship between two quantities by analyzing a graph.				
	31. Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs.				
	32. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. a. Graph linear and quadratic functions and show intercepts, maxima, and minima. b. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.				
	33. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasingly linearly, quadratically, or (more generally) as a polynomial function.				
	34. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.				
	35. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).				

Functions - Building Functions

Build a function that models a relationship between two quantities.

	42. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with topographic grid systems based on ratios).				
Statistics and Probability - Interpreting Categorical \& Quantitative Data					
Summarize, represent, and interpret data on two categorical and quantitative variables.					
	43. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. Interpret linear models.				
	44. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.				
	45. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.				
	46. Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.				
Summarize, represent, and interpret data on a single count or measurement variable.					
	47. Represent data with plots on the real number line (dot plots, histograms, and box plots).				
	48. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.				
	49. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).				
	50. Computer (using technology) and interpret the correlation coefficient of a linear fit.				
	51. Distinguish between correlation and causation.				

Statistics and Probability - Interpreting Categorical \& Quantitative Data

Understand and evaluate random processes underlying statistical experiments.
52. Understand statistics as a process for making inferences about population parameters based on a random sample from that population.

